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ABSTRACT

The demand of city planners for quantitative information on the impact of climate change on the urban
environment is increasing. However, such information is usually extracted from decadelong climate projec-
tions generated with global or regional climate models (RCMs). Because of their coarse resolution and un-
suitable physical parameterization, however, their model output is not adequate to be used at city scale. A full
dynamical downscaling to city level, on the other hand, is computationally too expensive for climatological
time scales. A statistical–dynamical computationally inexpensive method is therefore proposed that ap-
proximates well the behavior of the full dynamical downscaling approach. The approach downscales RCM
simulations using the combination of an RCM at high resolution (H-RES) and a land surface model (LSM).
The method involves the setup of a database of urban signatures by running an H-RES RCM with and without
urban parameterization for a relatively short period. Using an analog approach, these signatures are first
selectively added to the long-term RCM data, which are then used as forcing for an LSM using an urban
parameterization in a stand-alone mode. A comparison with a full dynamical downscaling approach is pre-
sented for the city of Brussels, Belgium, for 30 summers with the combined ALADIN–AROME model
(ALARO-0) coupled to the Surface Externalisée model (SURFEX) as H-RES RCM and SURFEX as LSM.
The average bias of the nocturnal urban heat island during heat waves is vanishingly small, and the RMSE is
strongly reduced. Not only is the statistical–dynamical approach able to correct the heat-wave number and
intensities, it can also improve intervariable correlations and multivariate and temporally correlated indices,
such as Humidex.

1. Introduction

The global mean surface air temperature has been
increasing since the preindustrial period, and this

increase is projected to continue throughout the twenty-
first century (Masson-Delmotte et al. 2018). People liv-
ing in cities are more exposed to heat as cities feature
climate conditions with temperatures that are typically
higher than the surrounding rural areas, a phenomenon
called the urban heat island (UHI; Oke et al. 2017;
Bader et al. 2018). Relative to rural inhabitants, city
residents are therefore subject to stronger heat stress
during hot events (Li and Bou-Zeid 2013; Lemonsu et al.
2015; Hamdi et al. 2016; Founda and Santamouris 2017;
Chapman et al. 2017; Wouters et al. 2017). With almost

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/JAMC-D-19-
0104.s1.

Corresponding author: François Duchêne, francois.duchene@
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50% of the global population currently living in an ur-
ban environment and as this fraction is projected to in-
crease [United Nations Human Settlements Programme
(UN-Habitat) 2010], it is relevant to provide improved
climate projections at the city scale (Rosenzweig et al.
2015; Berckmans et al. 2019).

Several exceptionally strong heat-wave (HW) events
occurred over Europe in the most recent decades
(Gabriel and Endlicher 2011). For instance, more than
70 000 deaths were attributed to the European heat
wave of summer 2003 (Robine et al. 2008). HWs are
projected to become longer, more intense, and more
likely to occur with global warming (Jacob et al. 2014;
Guerreiro et al. 2018) and are expected to have a huge
impact on human lives (e.g., Forzieri et al. 2017). In
Antwerp (Belgium), Martinez et al. (2018) showed an
expected increase in mortality by a factor of 1.7 and 4.5
attributable to heat in the near and far future, respec-
tively. Lauwaet et al. (2016) found that the number of
future HW days in Belgian cities will increase 2 times
faster than in the rural surroundings, even if the UHI is
expected to decrease slightly in Brussels upon increase
of incoming longwave radiation since the larger storage
capacity of buildings in urban areas buffer the increase
of longwave radiation in contrast to rural areas that will
warm more (Oleson et al. 2011; Hamdi et al. 2014a).

The common approach to estimate the uncertainty of
long-term (i.e., more than 30 years) climate projections
is by use of an ensemble of climate simulations. The
global circulation models participating in phase 5 of
the Coupled Model Intercomparison Project (CMIP5;
Taylor et al. 2012) provide such an ensemble at a hori-
zontal resolution of 100–200 km, and therefore they do
not capture regional, let alone local, effects. Regional
ensemble information is mainly generated by the ap-
proach of dynamic downscaling (see Fig. 1) using regional
climate models (RCMs). For instance, for Europe, the
Coordinated Regional Climate Downscaling Experiment
(CORDEX; Giorgi et al. 2009) provides an ensemble of
climate projections with 12.5-km resolution. However,
even at that extent over Europe, interactions between
atmosphere and city (Oke et al. 2017) are not simulated,
and, moreover, the RCM models typically lack an urban
scheme (Hamdi et al. 2014a; Daniel et al. 2019). The
urban–atmosphere interactions can be captured by in-
cluding an urban parameterization (UP) into an RCM at
high resolution (H-RES), that is, below 5 km (Masson
2000; Martilli et al. 2002; Hamdi and Masson 2008).
Further downscaling to urban ranges can then be done
using a land surface model (LSM) with an urban pa-
rameterization in a stand-alone mode or using a micro-
scale model (MM) that can simulate processes up to
meter-scale resolutions (Moonen et al. 2012).

Three types of methodologies are typically used to
downscale to the urban level: dynamic downscaling
(DD), statistical downscaling, and statistical–dynamical
downscaling (SDD). These approaches are tabulated in
Table 1 along with their fulfillment of three key criteria.
These criteria describe whether the downscaling ap-
proach 1) is able to adequately simulate physical in-
teractions between the city and the atmosphere, 2)
provides time series of different variables that are

FIG. 1. Schematic representation of the dynamical downscaling
approach that allows one to go from the global over the regional
and the high-resolution (H-RES) down to the urban scale. The
approach shown is the one used for Brussels in this work. The
global reanalysis ERA-Interim dataset was downscaled over
western Europe using the ALARO RCM at 20-km resolution.
Further downscaling over Belgium was done with ALARO cou-
pled with SURFEX (4-km resolution). In this step, three types of
simulations are conducted: the urban parameterization has or has
not been activated for two simulations, respectively, and our
method has been applied on a third one. Last, a domain covering
Brussels is simulated with SURFEX offline (1-km resolution).
Dynamic downscaling for the three first steps involved sequential
use of the meteorological conditions as lateral boundary condi-
tions, and the last step used the H-RES output as upper-air forcing.
The two red dots over Brussels indicate the locations of the urban
and rural stations (Molenbeek and Brussegem).
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physically consistent both in space and time and among
variables, and 3) is currently computationally man-
ageable for climatological ensemble purposes.

In principle, the best downscaling approach from re-
gional to city scale is the full dynamical downscaling (full
DD: RCM / H-RES UP / LSM/MM) that satisfies
criteria 1 and 2, but it is computationally too expensive
and therefore fails criterion 3. Although coordinated
efforts (e.g., at the European level; Hewitt and Lowe
2018) are currently exploring the H-RES scales, such
simulations are exceedingly computationally expensive
and largely lack urban parameterizations (Hamdi et al.
2014a; Termonia et al. 2018). An inexpensive alternative
dynamic downscaling approach (denoted as RCM /
LSM) involves the direct use of RCM output as input
forcing for a stand-alone and computationally inexpen-
sive LSM at city scale. Yet, the lack of well-resolved
atmosphere–city feedback processes in the forcing was
shown to lead to unrealistic simulation of the UHI
(Hamdi et al. 2014a). An intermediate downscaling step
to H-RES is therefore necessary that adequately re-
produces the urban–atmosphere interactions below
the range of the RCM model (Hamdi et al. 2014a;
Tsiringakis et al. 2019). Therefore, the RCM / LSM
approach fails to satisfy criterion 1 (see Table 1).

Statistical downscaling methods use statistical rela-
tionships between observed large-scale weather variables
and local-scale variables. They are computationally very
inexpensive but are typically tuned for a few city locations
and a single variable (Kershaw et al. 2010; Hoffmann
et al. 2012; Gutiérrez et al. 2013; Le Bras and Masson
2015; Liu et al. 2018; Wilby 2008). Therefore, they gen-
erally fail to capture complex interactions (criterion 1;
Table 1) and give physically coherent results for different
meteorological variables (criterion 2).

Recently, SDD techniques have emerged that aim
to combine the benefits of statistical and dynamical
downscaling (Hoffmann et al. 2018). Typically, these
approaches first produce detailed simulations at city
level for a relatively short period. Then, using relations
between large-scale RCM and local-scale information,
these detailed results are statistically recombined in

order to extract the information required. For instance,
Hoffmann et al. (2018) used a weather-type classifica-
tion based on cluster analysis to study the evolution of
UHI with climate change. The UHI associated with each
weather type was obtained by dynamically H-RES
downscaling to 1-km resolution for a few years. The
authors then performed a cluster-weighted average over
the 1-km UHI pattern associated with a long-term RCM
simulation where the weights were taken proportional
to the weather-type frequencies of the RCM. Another
urban SDD method is the cuboid method (Früh et al.
2011; �Zuvela-Aloise et al. 2014; Bokwa et al. 2018). This
method considers a few covariates (typically tempera-
ture, humidity, and wind) to fully characterize a partic-
ular variable of interest such as daily maximum or
minimum temperature. For each prevailing wind di-
rection, a limited set of (typically eight) idealized
computationally demanding microscale simulations is
performed by combining all combinations of the max-
imum and minimum boundaries of all covariates. The
downscaling of RCM variables is then done by multi-
linear interpolation of the microscale simulation re-
sults, weighted by RCM values of the covariates.

The SDD methods described so far are relatively
computationally inexpensive (criterion 3; Table 1), and
their city-scale simulations capture city–atmosphere in-
teractions (criterion 1). Although the approaches are
useful for extracting climate averages, important issues
exist when they are used to reconstruct long climate time
series. Indeed, upon recombining the limited set of city-
scale simulations, correlations of climate variables will
generally not be physically consistent. Such correlations
are, however, very important to characterize heat waves.
Moreover, the linear interpolation used by the cuboid
method may lead to physically unrealistic results be-
cause of the nonlinearities. In sum, existing SDD
methods fail to satisfy criterion 2 (see Table 1).

Rather than the calculation of a sole variable such as
the UHI, the aim here is to propose a downscaling ap-
proach that yields physically consistent time series on
climate time scales (i.e., 30 years) for multiple variables.
Such time series could then be used as input for further

TABLE 1. Different downscaling approaches/methods and their fulfillment of three criteria. The checkmark indicates that a feature is
satisfied, and an X indicates that it is not. The rightmost approach (new SDD) refers to the method presented in the current work. This
approach aims to approximate the full dynamical downscaling approach.

Criterion
Full DD: RCM / H-RES UP

/ LSM/MM
DD: RCM
/ LSM

Statistical
downscaling SDD

New SDD: RCM / H-RES
calibration / LSM

Adequate city–atmosphere
interactions

� X X � �

Output physically and
spatiotemporally consistent

� � X X �

Computationally manageable X � � � �

JUNE 2020 D U C H ÊN E E T A L . 1111

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/doi/10.1175/JAM

C
-D

-19-0104.1/4959351/jam
cd190104.pdf by R

O
YAL M

ETEO
R

O
LO

G
IC

AL IN
STIU

TE O
F BELG

IU
M

 user on 16 June 2020



downscaling, impact modeling, or the calculation of in-
dices that require adequate correlations in time (e.g.,
HWs, which are by definition very sensitive to the
crossing of the daily temperature thresholds) or inter-
variable correlations [e.g., human comfort indices such
as ‘‘Humidex’’ or the universal thermal climate index
(UTCI), the definitions of which are based on several
variables, which should then be calibrated in the same
way]. The main motivation for this work is therefore to
propose an SDD method that reproduces the results of
the full downscaling approach but using limited compu-
tational resources. This would allow the translation of an
ensemble of regional climate projections (e.g., from
CORDEX) from its regional down to city-level scale,
thereby propagating the model and scenario uncertainties.

Statistical downscaling approaches (Maraun and
Widmann 2018; Wilby 2008; Hoffmann et al. 2012)
and SDD methods (Hoffmann et al. 2018; Früh et al.
2011; �Zuvela-Aloise et al. 2014; Bokwa et al. 2018) act
on the final model output of RCMs. The calibration is
done on the basis of a limited set of H-RES RCM ex-
periments with urban parameterization that allows one
to construct a database of so-called urban signatures, as
shown in Fig. 2. Once this database is built one can skip
the computationally demanding H-RES downscaling
step as in Fig. 1 by applying the signature on the RCMs.
The additional downscaling step with the LSM then
guarantees the physical and spatiotemporal coherence
of the output (criterion 2). A proof of concept is pro-
vided here by comparing to what extent our method is
able to reproduce the results of a full downscaling ap-
proach over Brussels, Belgium. An evaluation of the
full downscaling approach against observations was
presented in Hamdi et al. (2015, 2016).

2. Data and methods

a. Calibration method

The ultimate goal of this method is to be able to
downscale a large set of RCM climate projections (e.g.,
EURO-CORDEX at 12.5 km) to city level. This is done
by first calibrating RCM output to H-RES scale by
adding the spatial signature of the urban–atmosphere
interactions for all meteorological variables (Fig. 2). The
calibrated data are then used as forcing for an LSM in
stand-alone mode at 1-km resolution. This paper focuses
on the evaluation of the proposed method, and the ap-
plication of the method using the EURO-CORDEX
ensemble RCM of future climate projection (up to 2100)
will be presented in a future work.

Figure 3 outlines the different steps of the proposed
calibration method. The first or training step of the cal-
ibration consists of creating an H-RES training database

containing a few years (four in our proof-of-concept
study) of H-RES climate simulations with no urban
parameterization (H-RES NO-UP) and a training base
with urban parameterization (H-RES UP), both cover-
ing the same period. For each day d of this period, the
signature D(d) is defined as the difference between the
corresponding variables with activated (UP) and deac-
tivated (NO-UP) urban parameterizations. More spe-
cifically, for variable i, location r, and hour of the day t:

urban signature [ Di,r,t(d) 5 XH2RES,UP
i,r,t (d)

2 XH2RES,NO2UP
i,r,t (d) . (1)

Here XH-RES,UP and XH-RES,NO-UP represent the vari-
ables from the H-RES RCM training dataset with and

FIG. 2. The overall goal of the statistical–dynamical downscaling
method is to translate an ensemble of RCM results (e.g., from
EURO-CORDEX at 12.5 km) to city-level scale. Instead of using
a computationally expensive dynamic downscaling step using an
H-RES RCM (see Fig. 1), a statistical calibration step is used for
which the method is described in Fig. 3, below. Next, the calibrated
H-RES output is used as forcing for an LSM in stand-alone mode.
For our evaluation approach, the indicated resolutions are differ-
ent from the ones indicated here (see Table 2).
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without urban parameterization, respectively. The term
urban signature is reminiscent of the urban fingerprint
used in Giovannini et al. (2011), although, in our quan-
titative approach it only captures urban and not oro-
graphic effects.

Once constructed, the urban signature database
serves to correct the RCM outputs in the second step
of the calibration (see Fig. 3). The correction of the
RCM result of a given day dRCM starts by finding the
most similar day in the training set (from the H-RES
NO-UP). To select this day, all variables are first
standardized by subtracting their mean and dividing
by their standard deviation (for each location sepa-
rately). The day dmin that is most analogous to a day
dRCM is obtained by minimizing the following cost
function J with respect to d:

J(d) 5 �
r
�

t
�

i
XRCM

i,r,t (dRCM) 2 XH2RES,NO2UP
i,r,t (d)

h i2
. (2)

Here XRCM
i,r,t and XH2RES,NO2UP

i,r,t are the standardized
RCM and H-RES NO-UP variables, respectively. Both
generally feature distinct spatial resolutions (RCM and
H-RES). Simple interpolation schemes (bilinear or

nearest neighbor as used in this study), potentially
including simple orographic corrections, are therefore
suggested to downscale the RCM contribution to the
H-RES resolution prior to subtraction.

Last, after finding day dmin of the training dataset that
is the best analog day of dRCM, the latter is calibrated by
adding the urban signature to all forcing variables i, all
spatial points r, and all times of the day t:

Calibration [ XCor2RCM
i,r,t (dRCM)

5 XRCM
i,r,t (dRCM) 1 Di,r,t(dmin) . (3)

Again, simple interpolation schemes are recom-
mended to convert the RCM to the H-RES resolution.
The calibrated result XCor–RCM(dRCM) is used as the
forcing of the LSM (see Fig. 2).

b. Model evaluation setup

The proposed SDD method aims at reproducing the
results of a full dynamical downscaling effort (full DD:
RCM / H-RES UP / LSM) but at a limited compu-
tational cost. The evaluation effort therefore compares
the proposed downscaling scheme with a full dynamic
downscaling. Dynamic downscaling is done for the city
of Brussels using the reanalysis ERA-Interim as bound-
ary forcing of the combined ALADIN–AROME RCM
(ALARO-0; De Troch et al. 2013), coupled with the
surface scheme Surface Externalisée (SURFEX; Masson
et al. 2013) as described further in section 2c. To inves-
tigate the physical and spatiotemporal consistency of the
output (criterion 2 in Table 1), we focus on HWs, the
UHI, and their relation but also consider other variables.
The period considered is 1981–2010 and covers June,
July, August, and September, which is henceforth simply
denoted as summer.

As tabulated in Table 2, for the urban, H-RES, and
RCM resolutions we use 1, 4, and 4 km, respectively.

FIG. 3. Outline of the two main steps of the calibration method.
The first or training step consists of creating the urban signature
database on the basis of a limited number of years simulated using
an H-RES RCM with activated urban parameterization (H-RES
UP) and deactivated urban parameterization (H-RES NO-UP).
The urban signature is obtained by subtracting H-RES NO-UP
from H-RES UP [see Eq. (1)]. For each day of the RCM time se-
ries, the second or calibration step consists of finding the most
analogous day within the H-RES NO-UP dataset [minimizing
Eq. (2)] and adding the corresponding urban signature to the RCM
results [see Eq. (3)]. The final output consists of a climatological
H-RES time series that can then be used for further downscaling to
urban scales (see Fig. 2).

TABLE 2. Model resolutions used in the downscaling ap-
proaches for the regional climate model, high-resolution RCM,
and land surface model. For the evaluation, both RCM and
H-RES have a resolution of 4 km because the RCM is in fact the
H-RES without urban parameterization in this step, which is
different from the RCM in Fig. 1. The RCM/H-RES model used
in the current work is ALARO, and the LSM is SURFEX. The
goal is to use the presented method in a future work to downscale
the EURO-CORDEX simulations (different models) that have a
resolution of 12.5 km and to use ALARO at 4 km and SURFEX
at 1 km to downscale.

RCM
H-RES

calibration LSM

Evaluation 4 km 4 km 1 km
EURO-CORDEX downscaling 12.5 km 4 km 1 km
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Here, the evaluation of the method is applied on a 4-km
resolution simulation without urban parameterization.
The rationale behind this is that it allows establishing a
competitive reference method (REF) against which our
SDD method can be tested in a perfect setup configu-
ration. A comparison against lower-resolution model
outputs (e.g., 12.5 km from CORDEX) would be unfair
as added value might simply be caused by their lack of
spatial detail. The control (CTR) dataset is taken here as
the 1-km LSM downscaling forced by the 4-km run with
activated urban parameterization (H-RES UP) and val-
idated against observations in Hamdi et al. (2015, 2016).

The training years consist of four summers (2003,
2005, 2006, and 2010) taken out of the last decade, all
considered as the warmest years (Masson-Delmotte
et al. 2018) during which different HWs occurred over
Brussels (Hamdi et al. 2016). Four years allow us to have
sufficient climatological representation while at the same
time keeping the computing time low. The training years
were taken out from the evaluation set.

Figure 4 summarizes the 26-yr datasets that are used
for evaluation, while Table S1 in the online supple-
mental material summarizes the naming of the experi-
ments. The REF data, equivalent to the RCM / LSM
approach in Table 1, are obtained by direct input of the
RCM outputs (here also equivalent to H-RES NO-UP)
as forcing for the LSM. The calibrated (CAL) one uses
the H-RES calibrated results as LSM input, and, finally,
the CTR run or full dynamic downscaling approach is
equivalent to the RCM / H-RES UP / LSM approach
in Table 1. For each forcing, two LSM simulations are
performed with different initialization methods. More
specifically, the soil parameters are either reinitialized
each day (REIN) (Best and Grimmond 2014; Berckmans
et al. 2017) or initialized once and evolved continuously
thereafter (CONT). Soil reinitializing of the H-RES CAL
is done by using the soil parameters of the H-RES UP
setup. By comparing a run with daily reinitialized soil
(prognostic) variables to the one with continuous soil
variables, one can estimate the impact of reinitialization

FIG. 4. Schematic representation of the different datasets used for our evaluation method.
The leftmost column corresponds to the forcing input for the stand-alone or offline simulations
with the LSM SURFEX to downscale to 1-km resolution over Brussels. The rightmost column
corresponds to the results used in our evaluation approach. The forcing input includes the data
from the RCM, the high-resolution calibrated (H-RES CAL) model generated using the
method of Fig. 3, and a high-resolution one generated with an RCM that includes activated
urban parameterization (H-RES UP). The output includes a reference run that is equivalent to
the RCM / LSM approach from Table 1 and a control one that is equivalent to the full
dynamical downscaling approach in Table 1. Both daily reinitialized soil variables (REIN) and
once-initialized continuous (CONT) SURFEX simulations are generated. Note that in our
evaluation method the RCM is the same as the H-RES NO-UP.
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on the urban signature. Note that a full daily reinitializa-
tion of the reinitialized reference run (REF_REIN) is
not possible for all variables. This is due to absence of
the urban-related surface variables (temperature of the
road, building, etc.) in the forcing dataset. Therefore,
these variables are initialized here with their summer-
averaged value.

c. Dynamic downscaling approach

Here the utilized model setup is described, and we
refer the reader to Hamdi et al. (2015) for more de-
tails. The RCM used is the numerical forecast model
ALARO-0 coupled to the LSM SURFEX, version 5
(v5; Hamdi et al. 2014a,b). The ALARO model is
designed to run at convection-permitting resolutions
(Gerard et al. 2009; De Troch et al. 2013). The ex-
ternalized land and ocean surface platform SURFEX
(Masson et al. 2013) can be used either in a coupled
mode with ALARO, by exchanging surface fluxes and
atmospheric forcing at every time step, or in offline
mode where the atmospheric drivers are derived from
model output and fed to the LSM. In such a case, there
is no feedback between the surface and the upper part
of the atmosphere. However, SURFEX is coupled to
a surface boundary layer (described in Hamdi and
Masson 2008) and has several air layers between the
soil and the forcing level. Large-scale forcing, turbu-
lence, drag, and canopy forces are therefore taken into
account. Note that a higher degree of surface–atmosphere
coupling is established by use of 3D microscale models
with levels beyond the surface boundary layer. Each
grid box is subdivided into four tiles: nature, urban,
sea (or ocean), and lakes. Each of these tiles has its
own parameterization but lacks horizontal detail. In
SURFEX, the Town Energy Balance (TEB) single-
layer urban canopy model (Masson 2000) is used for
the urban tile. TEB is based on the canyon approach
where a building block is represented as a roof, two
facing walls, and a street separating them. This ap-
proach simplifies the radiation exchanges to keep the
computing time low. The land coverage is based on
the global ECOCLIMAP database (Masson et al.
2003). Energy, water, and fluxes are computed with
each parameterization scheme and aggregated at the
grid scale weighted by the tile fractions following the
global database. There are 16 land-cover classes in
ECOCLIMAP among which 8 are used to describe
urban areas. For Brussels, ‘‘dense urban’’ and ‘‘tem-
perate suburban’’ are the dominant classes. Around
Brussels, the vegetation tiles are mainly crops and
temperate forest. Different properties (including ra-
diative and thermal properties, albedo, emissivity,
leaf area index, and geometry of buildings) are kept

constant throughout the simulation and can be found
in Masson et al. (2003).

The dynamic downscaling is composed of three
steps (see Fig. 1 for the exact domains): (i) A 20-km
ALARO simulation over western Europe forced at
the boundaries by ERA-Interim (Dee et al. 2011), (ii)
another 4-km ALARO one over Belgium forced at
the lateral boundaries by the 20-km simulation, (iii) a
1-km SURFEX offline run over a 30-km by 30-km
domain covering Brussels, forced at 17 m above ground
using the 4-km output. As in the experimental setup of
Hamdi et al. (2015), SURFEX offline is coupled to a
surface boundary layer scheme following the method
in Hamdi and Masson (2008) and Masson and Seity
(2009). The 1-km CAL run is forced by calibrated [see
Eq. (3)] 4-km data for all SURFEX hourly forcing
variables (temperature, humidity, wind, precipitation,
snow, pressure, and the downward radiative fluxes).

d. Definition of evaluation indices

Our model comparison focuses on multiple variables
relevant for most urban impact studies. The UHI for
Brussels is defined here as the temperature difference
between Molenbeek in the city center and the rural
Brussegem, situated 13 km northwest from the city
center (see red dots in Fig. 1). The nocturnal and day-
time UHI, denoted UHI_N and UHI_D, are the dif-
ferences of daily minimum and maximum temperatures,
respectively.

Multiple HW definitions exist in the literature, but
here the definition of the Belgian public health author-
ities is used. According to this definition, an HW is a
period of at least three consecutive days with average
daily minimum and maximum temperatures that exceed
188 and 308C, respectively. This evaluation of HW days
is performed for each location of interest and for all
presented experiments. The nocturnal HW intensity
(MIN_I) is defined as the sum of the Tmin exceedances
above 188C during an HW:

MIN_I 5 �
d

(Tmin,d 2 188C)u(Tmin,d 2 188C). (4)

Here u is the Heaviside or unit step function
(Abramowitz and Stegun 1972). The daytime HW in-
tensity is defined similarly with the threshold set at 308C:

MAX_I 5 �
d

(Tmax,d 2 308C)u(Tmax,d 2 308C). (5)

There are several commonly used heat-stress indices
that account for the effect of temperature as well as ad-
ditional environmental, physiological, and behavioral
variables such as humidity, air movement, solar radiation,
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metabolic rate, and age (Budd 2008). Here we use
Humidex, which combines both temperature and vapor
pressure in a formula developed by Masterson and
Richardson (1979):

Humidex 5 T 1
58C

9 hPa
(e 2 10 hPa), (6)

where T is the air temperature (8C) and e is the vapor
pressure (hPa) calculated from T and relative humidity.
The relation between Humidex and different categories
of human comfort, ranging from comfortable to very
dangerous, is tabulated in Table S2 in the online sup-
plemental material.

e. Review of model evaluation

An extensive validation of our CTR run against ob-
servations was performed in Hamdi et al. (2015, 2016),
the most relevant results of which can be summarized as
follows:

d For both minimum Tmin and maximum Tmax temper-
ature, the model compares well with the observations.
The mean summer bias for the rural reference station
(Brussegem) is 0.58 and 20.68C for Tmin and Tmax,
respectively. For the urban station (Molenbeek), the
mean summer bias is 0.08 and 20.88C for Tmin and
Tmax, respectively.

d During summer, the model overestimates by 0.3 and
0.2 K the nocturnal and daytime UHI, respectively.
During HW events, there is an underestimation by
0.9 K for both the nocturnal and daytime UHI.
However, the higher UHI phenomenon during HW
events is still simulated by the model. The root-mean-
square error (RMSE) for the nocturnal UHI for the
summer is 1.7K, whereas it is negligible for the daytime.
A PDF of the observed and simulated temperature and
UHI is also shown on Fig S4 of the online supplemental

material and will be discussed in more detail in the re-
sults section. The agreement between the observations
and the model is good, with the maximum of the prob-
ability density that peaks at 29% and 56%, respectively.

d The mean observed summer precipitation is well simu-
lated with only a slight underestimation of 0.5mmday21

in August.
d The model reproduces well the difference in relative

humidity (RH) between the urban and rural environ-
ments but underestimates RH during the warm season
by approximately 10% at a suburban station in Uccle.

d For wind speed and cloud cover, the model satisfac-
torily reproduces the observations during the summer.

The comparison of the results of our calibration method
and the reference simulation with the observations will
be performed in the next section.

3. Results

a. Univariate evaluation of the calibration
methodology

The results presented henceforth concern the REIN
simulations, and the ones of the continuous simulations
will be presented in section 3b. The results of this
section assess to what extent the calibration is able to
reproduce the results of the full dynamic downscaling
approach (CTR_REIN). The results focus on air tem-
perature and UHI, but results for wind and relative
humidity are also provided.

Prior to the comparison of the 1-km results, the
(H-RES) urban signature is briefly considered. Figure 5
shows the average summer temperature of the three 4-km
forcing [H-RES UP, RCM (5H-RES NO-UP), and
H-RES CAL; see Fig. 4]. Although of coarser resolution
than the LSM output of 1 km, it is clear that the calibrated
H-RES result (H-RES CAL) approximates well the one

FIG. 5. The average temperature used as forcing for the LSM as tabulated in the leftmost column in Fig. 4. This includes the temperature
from (a) the RCM, (b) the H-RES CAL model generated using the method of Fig. 3, and (c) the high-resolution one generated with
H-RES UP. Averages are taken over 26 summers of the evaluation period for the three 4-km experiments. The H-RES calibration data
approximate well those of H-RES UP.
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of the H-RES run with urban parameterization (H-RES
UP). The forcing temperature at 17 m in the city center
(Molenbeek) is 15.48, 16.08, and 16.28C for the RCM
(5H-RES NO-UP), H-RES CAL, and H-RES UP, re-
spectively. The 17-m forcing corresponds to the lowest
level of the ALARO model.

Table 3 tabulates the average nocturnal UHI during
summer and during HW events for the reference (REF_
REIN) and calibrated (CAL_REIN) runs and their bias
and RMSE with respect to the control run (CTR_REIN).
The calibration method is able to eliminate the large
negative bias of nocturnal UHI (20.5 K) of the summer
UHI of the reference run (REF_REIN). The observed
phenomenon of an augmented UHI during HWs (Zhou
and Shepherd 2010; for Brussels, see Hamdi et al. 2016) is
not reproduced by the reference run, thereby giving rise
to a negative nocturnal UHI bias of 21.5K (third column
of Table 3). This failure of the reference run can be traced
back to the initialization at constant value of the prognostic
urban variables (see end of section 2b). However, it con-
firms the fact that the REF_REIN run, obtained by di-
rectly coupling RCM model results to an LSM, amounts to
unrealistic results and requires calibration. Again, our
method provides an almost perfect elimination of bias
during HWs. To the same degree, the daytime UHI (based
on daily maximum temperatures) is fully calibrated, both
during the full summer period and during HWs events (see
Table S3 in the online supplemental material).

The evaluation results presented so far are obtained by
comparing with the control run. A full spatial and subdaily
evaluation against observations is out of the scope of this
study. However, the observed summer-averaged nocturnal
UHI of 1.8K compares well with the one of the calibrated
run, which is 1.6K (Hamdi et al. 2016). During HWs, there
is an underestimation of around 1K. The observed values
of the daytime UHI (0.8K) approximate well the ones of
the control and calibrated model (0.9 K).1 The RMSE for

the reference run (2.1 K) is reduced by calibration to the
level of the control run (RMSE 5 1.7 K), implying a near-
perfect RMSE correction. For the daytime UHI, existing
differences between control and reference runs are minor
(0.1K). Supplemental Fig. S4 also compares the observed
and modeled probability densities of the minimal tem-
peratures at the rural and urban stations and their associ-
ated urban heat islands. It is shown that there is a strong
agreement of the probability densities between the ob-
servations and the full dynamical simulation but a weaker
agreement with the reference run. Moreover, the cali-
bration methodology improves the probability distribu-
tion of the reference run. The peak goes from 72% for the
REF_REIN down to 52% for the CAL_REIN, very close
to 56% of the CTR_REIN compared to the observations’
peak at 29%. The calibration does improve the temper-
ature at the urban site but has limited effect at the rural
station, as expected.

Apart from the overall elimination of the bias, the
calibration scheme also strongly reduces the RMSE of
the reference run (REF_REIN; see Table 3), both for
the entire summer (80% reductions) and during the HW
events (77% reduction). The UHI used so far is derived
from daily minimal or maximal temperatures and at one
rural and one urban station only. However, our cali-
bration method also improves the UHI at subdaily time
scales as clearly shown in Fig. 6 and for the entire do-
main over Brussels as shown in Fig. 7. The southwest–
northeast orientation of the UHI pattern seen in Fig. 7
can be attributed to a comparable pattern of urbaniza-
tion (see, e.g., Fig. 1 in Hamdi et al. 2014a) and to heat
advection (Hamdi et al. 2015).

The spatial patterns of daily minimum and maximum
wind speed and relative humidity are shown in Figs. S2
and S3 of the online supplemental material. Calibration
provides clear improvements for each variable consid-
ered. For minimum wind speed, the results for the ref-
erence, control, and calibration runs are all similar. Note
that our method does not aim to add value for precipi-
tation at the urban resolution because the final step of
our downscaling method involves the use of an LSM and
therefore does not resolve upper-air processes.

TABLE 3. Mean, bias, and RMSE of the nocturnal UHI [UHI_N (K)] during summer and heat-wave events for the reference (REF),
calibrated (CAL), reinitialized (REIN), and continuous (CONT) runs. The difference is calculated between Molenbeek in the city center
and Brussegem, a rural location outside Brussels (see Fig. 1). Note that the bias and RMSE are evaluated with respect to the control run
(CTR_REIN or CTR_CONT), and all are averages over the 26-yr evaluation period.

REF_REIN UHI_N CAL_REIN UHI_N REF_CONT UHI_N CAL_CONT UHI_N

Summer HW Summer HW Summer HW Summer HW

Mean (K) 1.0 0.6 1.6 2.2 0.7 0.6 0.9 0.9
Bias (K) 20.5 21.5 0.0 0.0 0.4 0.6 0.2 0.3
RMSE (K) 0.5 2.2 0.1 0.5 0.4 1.0 0.3 0.9

1 The observed values reported here are averages over the
extended-summer periods of the 26-yr evaluation period and
therefore slightly differ from those in Hamdi et al. (2016).
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b. Calibration of heat-wave features

Apart from an overall improvement, the calibration
method is also able to improve the results during HW
days (see Table 3). This suggests that the calibration
induces more than a mere shift of the average UHI by

reestablishing the temporal correlations. This is indeed
confirmed in Fig. 8, which shows the average nocturnal
UHI per summer month. There is a clear increase of the
UHI of the control run during HWs (Fig. 8b) as com-
pared with the summer average (Fig. 8a). As opposed to
the reference run that underestimates the HW intensity
by a factor of 4 in July and August, the calibration re-
alistically reproduces this effect. The clear improve-
ments from calibration of the monthly averaged are
caused by the reproduction of the individual HWs (not
shown). The HW characteristics in the urban location
are summarized in Fig. 9. The nocturnal HW intensity
[MIN_I; see Eq. (4)] is strongly improved to a value that
differs only 3% from the control result (CTR_REIN).

c. Calibration of multivariate variables of heat
comfort

Apart from reestablishing climatological averaged
values, one may ask whether the calibration method is
capable of reestablishing correlations among different
variables. These are relevant, for instance, when using
the results for calculating heat-comfort indices, for use
in impact models or for further downscaling.

Figure S1 in the online supplemental material shows the
diurnal cycle of the correlation between temperature and
relative humidity in the city center. The anticorrelations in

FIG. 6. Diurnal cycle of the UHI (K) averaged over the 26
summers of the evaluation period for the three reinitialized 1-km
experiments. These include the reference run (REF_REIN; red),
the calibration run (CAL_REIN; green), and the control one
(CTR_REIN; blue) as described in Fig. 4. The calibration method
clearly improves the diurnal cycle of UHI with respect to the CTR
as compared with the REF.

FIG. 7. Spatial pattern of average (a)–(c) daily minimum temperature and (d)–(f) daily minimum Humidex [see Eq. (6)] over Brussels.
Both averages are taken over 26 summers of the evaluation period for the three 1-km experiments. These include (left) REF_REIN,
(center) CAL_REIN, and (right) CTR_REIN as described in Fig. 4. The two black dots over Brussels indicate the locations of the urban
and rural stations (Molenbeek and Brussegem).
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the reference and the control runs only differ during the
night, and the calibration is clearly capable of reestab-
lishing the correlations. This leads to an improved repre-
sentation of Humidex, an index for heat comfort that
combines temperature and relative humidity [see Eq. (6)].
Figures 7d–f show the average (minimal) Humidex. The
calibration method strongly improves the spatial pattern,
especially during the night, although there is a slight
overestimation of the calibrated run as compared to the
control one.

Figure 10 shows the daily minimum Humidex averaged
over the HW days (at the urban location for each experi-
ment separately). In the rural and urban areas the refer-
ence run overestimates and underestimates, respectively.

Again, the calibration is able to strongly alleviate these
differences.

d. Calibration results of the continuous setup

Here we discuss the results of the 1-km CONT simu-
lations, which are obtained by initializing the soil vari-
ables once and evolve continuously thereafter. Although
the calibration scheme does not fully eliminate the bias in
the nocturnal UHI (see Table 3) with respect to the
control run (CTR_CONT), there is a clear improvement.
More specifically, the nocturnal UHI bias is reduced from
0.4 to 0.2K, and the RMSE is reduced from 0.4 to 0.3 K
during summertime. During HWs the bias is lower by a
factor of 2, but the RMSE remains at the same level.

FIG. 8. The average monthly UHI_N (K) by month. Averages are taken over the 26 summers
of the evaluation period from the three 1-km experiments. These include REF_REIN (red),
CAL_REIN (green), and CTR_REIN (blue) as described in Fig. 4. Shown are (a) the average
on the complete summer data and (b) averages taken over all HW days. There were no heat
waves in September.

FIG. 9. Heat-wave characteristics, averaged over the 26 summers of the evaluation period: (a) average number of
HWs per year, (b) average nocturnal intensity during an HW [see Eq. (4)], and, (c) average HW duration. The three
1-km experiments include REF_REIN (red), CAL_REIN (green), and CTR_REIN (blue) as described in Fig. 4.
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Figure 11 shows the spatial pattern of the average mini-
mum and maximum summer temperature over Brussels.
There is a clear spatial improvement relative to the ref-
erence when using the calibration method. Although the
difference in temperature is small, this has already had an
impact on extreme events such as the number of HW. The
total number of HWs in the city center is 17, 26, and 39 for
the REF_CONT, CAL_CONT, and CTR_CONT, re-
spectively. Therefore, the calibration amounts to 53%
more HWs as compared with the reference. The noctur-
nal HW intensity [see Eq. (4)] is only slightly increased
(by 16%) by calibration, while the daytime HW intensity
[see Eq. (5)] and the duration of HW is not drastically
impacted. The impact of calibration on Humidex is

comparable to the one on temperature (see Fig. 11).
More specifically, the average daily minimum Humidex
in the city center is 20.28, 20.58, and 21.08C for the refer-
ence, calibrated, and control runs, respectively.

4. Conclusions

An ensemble of decadelong climate projections (i.e.,
more than 30 years) is necessary to estimate uncer-
tainties and, in principle, an ensemble of RCM projec-
tions could be used for that purpose. However, RCMs
fail to resolve city-scale processes due their coarse spa-
tial detail and since they typically lack an urban scheme.
Since a full dynamic downscaling approach from RCM

FIG. 10. As in Figs. 7d–f, but for Humidex [see Eq.(6)] only during heat waves. Averaged are taken over all HW days detected in the
city center.

FIG. 11. As in Figs. 7a–c, but for the continuous (CONT) simulation instead of the reinitialized simulations and showing the daily
maximum temperature as well as the daily minimum temperature.
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to the urban range is computationally too expensive, a
statistical–dynamical method is proposed that approxi-
mates this full dynamic downscaling. Moreover, as op-
posed to previously proposed downscaling methods,
ours is computationally manageable, adequately repro-
duces city–atmosphere interactions, and amounts to
time series with adequate intervariable and spatiotem-
poral correlations.

The method consists of selectively adding an urban
signature to the RCM outputs and then using this as
input of the LSM in a stand-alone mode. A proof of
concept is presented for Brussels for 26 summer seasons
using the RCM ALARO-0 and the LSM SURFEX.

The evaluation is done against a full dynamic down-
scaling approach. The calibration method is able to re-
duce the overall RCM bias in nocturnal UHI from
20.5 K to below 0.1 K, while during heat waves the bias
is reduced from 1.5 K to below 0.1 K. Similarly, the
RMSE is strongly reduced. The calibration method goes
beyond a simple overall adjustment as it also reestab-
lishes temporal correlations such as the number and
intensity of heat waves, spatial patterns, and intervari-
able correlations such as the one of Humidex. Moreover,
the spatial pattern of Humidex is also well calibrated
during heat waves. Apart from the aforementioned
simulations that use daily reinitialized soil variables, the
calibration method was also applied using continuously
evolved soil variables. Although strongly reduced, the
improvements from calibration were substantial. This
highlights the need for adequate soil initialization.

The proposed approach will be used to downscale
regional climate model ensembles such as the one
from the EURO-CORDEX archive (Jacob et al. 2014;
Giot et al. 2016) to city level in order to propagate the
model and scenario uncertainties from regional to
city scale.
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